Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
mBio ; 15(3): e0288023, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38349129

Infection with neurotropic viruses may result in changes in host behavior, which are closely associated with degenerative changes in neurons. The lyssavirus genus comprises highly neurotropic viruses, including the rabies virus (RABV), which has been shown to induce degenerative changes in neurons, marked by the self-destruction of axons. The underlying mechanism by which the RABV degrades neuronal cytoskeletal proteins remains incomplete. In this study, we show that infection with RABV or overexpression of its M protein can disrupt mitochondrial metabolism by binding to Slc25a4. This leads to a reduction in NAD+ production and a subsequent influx of Ca2+ from the endoplasmic reticulum and mitochondria into the cytoplasm of neuronal cell lines, activating Ca2+-dependent proteinase calpains that degrade α-tubulin. We further screened the M proteins of different lyssaviruses and discovered that the M protein of the dog-derived RABV strain (DRV) does not degrade α-tubulin. Sequence analysis of the DRV M protein and that of the lab-attenuated RABV strain CVS revealed that the 57th amino acid is vital for M-induced microtubule degradation. We generated a recombinant RABV with a mutation at the 57th amino acid position in its M protein and showed that this mutation reduces α-tubulin degradation in vitro and axonal degeneration in vivo. This study elucidates the mechanism by which lyssavirus induces neuron degeneration.IMPORTANCEPrevious studies have suggested that RABV (rabies virus, the representative of lyssavirus) infection induces structural abnormalities in neurons. But there are few articles on the mechanism of lyssavirus' effect on neurons, and the mechanism of how RABV infection induces neurological dysfunction remains incomplete. The M protein of lyssavirus can downregulate cellular ATP levels by interacting with Slc25a4, and this decrease in ATP leads to a decrease in the level of NAD+ in the cytosol, which results in the release of Ca2+ from the intracellular calcium pool, the endoplasmic reticulum, and mitochondria. The presence of large amounts of Ca2+ in the cytoplasm activates Ca2+-dependent proteases and degrades microtubule proteins. The amino acid 57 of M protein is the key site determining its disruption of mitochondrial metabolism and subsequent neuron degeneration.


Lyssavirus , Rabies virus , Rabies , Animals , Dogs , Lyssavirus/genetics , Tubulin/metabolism , NAD/metabolism , Rabies virus/genetics , Rabies virus/metabolism , Rabies/metabolism , Neurons , Microtubules/metabolism , Mitochondria/metabolism , Amino Acids/metabolism , Nerve Degeneration/metabolism , Adenosine Triphosphate/metabolism
2.
Vet Microbiol ; 289: 109952, 2024 Feb.
Article En | MEDLINE | ID: mdl-38141399

Rabies is an ancient zoonotic disease caused by the rabies virus (RABV), and a sharp increase in rabies cases and deaths were observed following the COVID-19 pandemic, indicating that it still poses a severe public health threat in most countries in the world. Cholesterol is one of the major lipid components in cells, and the exact role of cholesterol in RABV infection remains unclear. In this study, we initially observed that cellular cholesterol levels were significantly elevated in RABV infected cells, while cholesterol depletion by using methyl-ß-cyclodextrin (MßCD) could restrict RABV entry. We further found that decreasing the cholesterol level of the viral envelope could change the bullet-shaped morphology of RABV and dislodge the glycoproteins on its surface to affect RABV entry. Moreover, the depletion of cholesterol could decrease lysosomal cholesterol accumulation to inhibit RABV fusion. Finally, it was found that the depletion of cholesterol by MßCD was due to the increase of oxygen sterol production in RABV-infected cells and the enhancement of cholesterol efflux by activating liver X receptor alpha (LXRα). Together, our study reveals a novel role of cholesterol in RABV infection, providing new insight into explore of effective therapeutics for rabies.


Rabies virus , Rabies , Animals , Rabies/prevention & control , Rabies/veterinary , Adsorption , Pandemics , Cholesterol
3.
Redox Biol ; 64: 102769, 2023 08.
Article En | MEDLINE | ID: mdl-37285742

Cholesterol-24-hydroxylase (CH24H or Cyp46a1) is a reticulum-associated membrane protein that plays an irreplaceable role in cholesterol metabolism in the brain and has been well-studied in several neuro-associated diseases in recent years. In the present study, we found that CH24H expression can be induced by several neuroinvasive viruses, including vesicular stomatitis virus (VSV), rabies virus (RABV), Semliki Forest virus (SFV) and murine hepatitis virus (MHV). The CH24H metabolite, 24-hydroxycholesterol (24HC), also shows competence in inhibiting the replication of multiple viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 24HC can increase the cholesterol concentration in multivesicular body (MVB)/late endosome (LE) by disrupting the interaction between OSBP and VAPA, resulting in viral particles being trapped in MVB/LE, ultimately compromising VSV and RABV entry into host cells. These findings provide the first evidence that brain cholesterol oxidation products may play a critical role in viral infection.


Virus Internalization , Animals , Mice , Cholesterol/metabolism , COVID-19/metabolism , COVID-19/virology , Homeostasis , SARS-CoV-2/metabolism , Cholesterol 24-Hydroxylase/metabolism
4.
J Virol ; 97(7): e0065623, 2023 07 27.
Article En | MEDLINE | ID: mdl-37338411

Mounting evidence suggests that gut microbial composition and its metabolites, including short-chain fatty acids (SCFAs), have beneficial effects in regulating host immunogenicity to vaccines. However, it remains unknown whether and how SCFAs improve the immunogenicity of the rabies vaccine. In this study, we investigated the effect of SCFAs on the immune response to rabies vaccine in vancomycin (Vanco)-treated mice and found that oral gavage with butyrate-producing bacteria (C. butyricum) and butyrate supplementation elevated RABV-specific IgM, IgG, and virus-neutralizing antibodies (VNAs) in Vanco-treated mice. Supplementation with butyrate expanded antigen-specific CD4+ T cells and IFN-γ-secreting cells, augmented germinal center (GC) B cell recruitment, promoted plasma cells (PCs) and RABV-specific antibody-secreting cells (ASCs) generation in Vanco-treated mice. Mechanistically, butyrate enhanced mitochondrial function and activated the Akt-mTOR pathway in primary B cells isolated from Vanco-treated mice, ultimately promoting B lymphocyte-induced maturation protein-1 (Blimp-1) expression and CD138+ PCs generation. These results highlight the important role of butyrate in alleviating Vanco-caused humoral immunity attenuation in rabies-vaccinated mice and maintaining host immune homeostasis. IMPORTANCE The gut microbiome plays many crucial roles in the maintenance of immune homeostasis. Alteration of the gut microbiome and metabolites has been shown to impact vaccine efficacy. SCFAs can act as an energy source for B-cells, thereby promoting both mucosal and systemic immunity in the host by inhibiting HDACs and activation of GPR receptors. This study investigates the impact of orally administered butyrate, an SCFA, on the immunogenicity of rabies vaccines in Vanco-treated mice. The results showed that butyrate ameliorated humoral immunity by facilitating the generation of plasma cells via the Akt-mTOR in Vanco-treated mice. These findings unveil the impact of SCFAs on the immune response of the rabies vaccine and confirm the crucial role of butyrate in regulating immunogenicity to rabies vaccines in antibiotic-treated mice. This study provides a fresh insight into the relationship of microbial metabolites and rabies vaccination.


Rabies Vaccines , Rabies , Mice , Animals , Rabies/prevention & control , Plasma Cells , Immunity, Humoral , Vancomycin/pharmacology , Proto-Oncogene Proteins c-akt , Antibodies, Viral , TOR Serine-Threonine Kinases , Fatty Acids, Volatile , Butyrates
5.
J Virol ; 96(17): e0105022, 2022 09 14.
Article En | MEDLINE | ID: mdl-36005758

Infection with laboratory-attenuated rabies virus (RABV), but not wild-type (wt) RABV, can enhance the permeability of the blood-brain barrier (BBB), which is considered a key determinant for RABV pathogenicity. A previous study showed that the enhancement of BBB permeability is directly due not to RABV infection but to virus-induced inflammatory molecules. In this study, the effect of the matrix metallopeptidase (MMP) family on the permeability of the BBB during RABV infection was evaluated. We found that the expression level of MMP8 was upregulated in mice infected with lab-attenuated RABV but not with wt RABV. Lab-attenuated RABV rather than wt RABV activates inflammatory signaling pathways mediated by the nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Activated NF-κB (p65) and AP-1 (c-Fos) bind to the MMP8 promoter, resulting in upregulation of its transcription. Analysis of mouse brains infected with the recombinant RABV expressing MMP8 indicated that MMP8 enhanced BBB permeability, leading to infiltration of inflammatory cells into the central nervous system (CNS). In brain-derived endothelial cells, treatment with MMP8 recombinant protein caused the degradation of tight junction (TJ) proteins, and the application of an MMP8 inhibitor inhibited the degradation of TJ proteins after RABV infection. Furthermore, an in vivo experiment using an MMP8 inhibitor during RABV infection demonstrated that BBB opening was diminished. In summary, our data suggest that the infection of lab-attenuated RABV enhances the BBB opening by upregulating MMP8. IMPORTANCE The ability to change BBB permeability was associated with the pathogenicity of RABV. BBB permeability was enhanced by infection with lab-attenuated RABV instead of wt RABV, allowing immune cells to infiltrate into the CNS. We found that MMP8 plays an important role in enhancing BBB permeability by degradation of TJ proteins during RABV infection. Using an MMP8 selective inhibitor restores the reduction of TJ proteins. We reveal that MMP8 is upregulated via the MAPK and NF-κB inflammatory pathways, activated by lab-attenuated RABV infection but not wt RABV. Our findings suggest that MMP8 has a critical role in modulating the opening of the BBB during RABV infection, which provides fresh insight into developing effective therapeutics for rabies and infection with other neurotropic viruses.


Blood-Brain Barrier/metabolism , Matrix Metalloproteinase 8/metabolism , Rabies virus , Rabies/virology , Animals , Brain , Endothelial Cells/metabolism , Matrix Metalloproteinase 8/genetics , Mice , NF-kappa B/metabolism
6.
Anal Chem ; 94(21): 7655-7664, 2022 05 31.
Article En | MEDLINE | ID: mdl-35579617

Rabies is a serious zoonotic disease in almost all warm-blooded animals and causes fatal encephalitis. The detection of rabies virus (RABV) is critical and remains a significant challenge. Herein, an electrochemiluminescence resonance energy transfer (ECL-RET) and electrochemical (EC) dual-mode immunosensor was developed for highly sensitive detection of RABV glycoprotein. Dendritic mesoporous silica nanoparticles (DMSNs) were employed to load Ru(bpy)32+ and to obtain ECL probes (Ru@DMSNs). Ru@DMSNs were decorated on the electrode surface, followed by the modification of the RABV antibody (Ab1). RABV was specifically recognized and captured by Ab1, causing the decline of the ECL signal due to the obstruction of electron transfer. Additionally, manganese oxide nanoparticles (MnOx) modified with Ab2 can further quench the ECL signal of Ru@DMSNs via the RET between Ru@DMSNs and MnOx. Meanwhile, MnOx can catalyze the oxidation of o-phenylenediamine (o-PD), generating a significant differential pulse voltammetry (DPV) signal as a second signal to monitor RABV glycoprotein concentration. Consequently, an immunosensor was developed to achieve dual-signal detection of RABV and improve reliability. Under the optimal conditions, detection ranges of 0.10 pg·mL-1 to 10 ng·mL-1 for ECL (with an 88 fg·mL-1 detection limit) and 1 pg·mL-1 to 2 ng·mL-1 for EC (with a 0.1 pg·mL-1 detection limit) were obtained for RABV detection. The reliability of this immunoassay was validated by eight brain tissue samples. The results were found to be compatible with the results of the real-time reverse transcription-polymerase chain reaction (RT-PCR) assay, indicating the potential applicability of this method for RABV diagnosis.


Biosensing Techniques , Metal Nanoparticles , Nanoparticles , Rabies virus , Biosensing Techniques/methods , Electrochemical Techniques/methods , Energy Transfer , Glycoproteins , Immunoassay/methods , Limit of Detection , Luminescent Measurements/methods , Reproducibility of Results , Silicon Dioxide
7.
J Virol ; 96(4): e0194221, 2022 02 23.
Article En | MEDLINE | ID: mdl-34878915

Rabies, caused by rabies virus (RABV), is a widespread zoonosis that is nearly 100% fatal. Alteration of the metabolic environment affects viral replication and the immune response during viral infection. In this study, glucose uptake was increased in mouse brains at the late stage of infection with different RABV strains (lab-attenuated CVS strain and wild-type DRV strain). To illustrate the mechanism underlying glucose metabolism alteration, comprehensive analysis of lysine acetylation and target analysis of energy metabolites in mouse brains infected with CVS and DRV strains were performed. A total of 156 acetylated sites and 115 acetylated proteins were identified as significantly different during RABV infection. Compared to CVS- and mock-infected mice, the lysine acetylation levels of glycolysis and tricarboxylic acid (TCA) cycle enzymes were decreased, and enzyme activity was upregulated in DRV-infected mouse brains. Metabolomic analysis revealed high levels of oxaloacetate (OAA) in RABV-infected mouse brains. Specifically, the OAA level in CVS-infected mouse brains was higher than that in DRV-infected mouse brains, which contributed to the enhancement of the metabolic rate at the substrate level. Finally, we confirmed that OAA could reduce excessive neuroinflammation in CVS-infected mouse brains by inhibiting JNK and P38 phosphorylation. Taken together, this study provides fresh insight into the different strategies the host adapts to regulate glucose metabolism for energy requirements after different RABV strain infections and suggests that OAA treatment is a strategy to prevent neural damage during RABV infection. IMPORTANCE Both viral replication and the host immune response are highly energy dependent. It is important to understand how the rabies virus affects energy metabolism in the brain. Glucose is the direct energy source for cell metabolism. Previous studies have revealed that there is some association between acetylation and metabolic processes. In this study, comprehensive protein acetylation and glucose metabolism analysis were conducted to compare glucose metabolism in mouse brains infected with different RABV strains. Our study demonstrates that the regulation of enzyme activity by acetylation and OAA accumulation at the substrate level are two strategies for the host to respond to energy requirements after RABV infection. Our study also indicates the role OAA could play in neuronal protection by suppressing excessive neuroinflammation.


Brain/metabolism , Glucose/metabolism , Rabies virus/pathogenicity , Rabies/metabolism , Acetylation , Animals , Brain/drug effects , Brain/immunology , Brain/virology , Energy Metabolism , Inflammation , Mice , Neuroprotective Agents/metabolism , Neuroprotective Agents/therapeutic use , Oxaloacetic Acid/metabolism , Oxaloacetic Acid/therapeutic use , Proteome/metabolism , Rabies/drug therapy , Rabies/virology
8.
J Gen Virol ; 102(10)2021 10.
Article En | MEDLINE | ID: mdl-34661517

Rabies is a zoonotic disease caused by the rabies virus (RABV). RABV can lead to fatal encephalitis and is still a serious threat in most parts of the world. Interferon regulatory factor 7 (IRF7) is the main transcriptional regulator of type I IFN, and it is crucial for the induction of IFNα/ß and the type I IFN-dependent immune response. In this study, we focused on the role of IRF7 in the pathogenicity and immunogenicity of RABV using an IRF7-/- mouse model. The results showed that the absence of IRF7 made mice more susceptible to RABV, because IRF7 restricted the replication of RABV in the early stage of infection. IRF7 deficiency affected the recruitment of plasmacytoid dendritic cells to the draining lymph nodes (dLNs), reduced the production of type I IFN and expression of IFN-stimulated genes. Furthermore, we found that the ability to produce specific RABV-neutralizing antibody was impaired in IRF7-/- mice. Consistently, IRF7 deficiency affected the recruitment of germinal-centre B cells to dLNs, and the generation of plasma cells and RABV-specific antibody secreting cells. Moreover, the absence of IRF7 downregulated the induction of IFN-γ and reduced type 1 T helper cell (Th1)-dependent antibody production. Collectively, our findings demonstrate that IRF7 promotes humoral immune responses and compromises the pathogenicity of RABV in a mouse model.


Interferon Regulatory Factor-7/physiology , Rabies virus/immunology , Rabies virus/pathogenicity , Rabies/immunology , Rabies/virology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibody-Producing Cells/immunology , B-Lymphocytes/immunology , Cell Line , Dendritic Cells/immunology , Disease Models, Animal , Female , Immunity, Humoral , Interferon Regulatory Factor-7/deficiency , Interferon Regulatory Factor-7/genetics , Interferons/analysis , Lymph Nodes/immunology , Male , Mice , Mice, Inbred C57BL , Rabies Vaccines/immunology , Th1 Cells/immunology , Viral Load
9.
J Gen Virol ; 102(7)2021 07.
Article En | MEDLINE | ID: mdl-34269675

Rabies virus (RABV) infection can initiate the host immune defence response and induce an antiviral state characterized by the expression of interferon (IFN)-stimulated genes (ISGs), among which the family of genes of IFN-induced protein with tetratricopeptide repeats (Ifits) are prominent representatives. Herein, we demonstrated that the mRNA and protein levels of Ifit1, Ifit2 and Ifit3 were highly increased in cultured cells and mouse brains after RABV infection. Recombinant RABV expressing Ifit3, designated rRABV-Ifit3, displayed a lower pathogenicity than the parent RABV in C57BL/6 mice after intramuscular administration, and Ifit3-deficient mice exhibited higher susceptibility to RABV infection and higher mortality during RABV infection. Moreover, compared with their individual expressions, co-expression of Ifit2 and Ifit3 could more effectively inhibit RABV replication in vitro. These results indicate that murine Ifit3 plays an essential role in restricting the replication and reducing the pathogenicity of RABV. Ifit3 acts synergistically with Ifit2 to inhibit RABV replication, providing further insight into the function and complexity of the Ifit family.


Intracellular Signaling Peptides and Proteins/metabolism , Rabies virus/physiology , Rabies/virology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Brain/metabolism , Brain/virology , Cell Line , Female , Humans , Immunity, Innate , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Rabies/immunology , Rabies virus/pathogenicity , Transcriptome , Viral Load , Virus Replication
10.
Clin Transl Med ; 10(4): e161, 2020 Aug.
Article En | MEDLINE | ID: mdl-32898335

BACKGROUND: Gut microbiome plays a crucial role in modulating human and animal immune responses. Rabies is a fatal zoonosis causing encephalitis in mammals and vaccination is the most effective method to control and eliminate rabies. The relationship between the gut microbiome and humoral immunity post rabies vaccination has not been investigated yet. METHODS: Mice orally administrated with a cocktail of broad-spectrum antibiotics were inoculated with rabies vaccines, and humoral immune response was analyzed at indicated time points. The 16S ribosomal RNA (16S rRNA) gene sequencing was performed on fecal samples from groups in vancomycin-treated and untreated mice. Mice were immunized with rabies vaccines and virus-neutralizing antibody (VNA) levels were measured, resulting in VNA high (H) and low (L) groups. Then 16S rRNA gene sequencing was performed on fecal samples from H and L group mice. RESULTS: After antibiotic (Abx) treatment, mice had decreased levels of rabies virus (RABV)-specific IgM, IgG, and virus-neutralizing antibody compared with untreated mice. Abx-treated mice had fewer T follicular helper cells, germinal center B cells, and antibody secreting cells (ASCs) in lymph nodes than did untreated mice. Gut microbiome facilitated secondary immune responses by increasing the generation of ASCs. Treatment with vancomycin alone had a similarly impaired effect on the humoral immune responses compared with Abx-treated mice. From the natural population group of mice received rabies vaccines, VNA titers vary significantly and the abundance of Clostridiales and Lachnospiraceae was positively associated with the antibody titers in mice. CONCLUSIONS: Our results provide the evidence that the gut microbiome impacts humoral immunity post rabies vaccination, and further investigation of the mechanism will help the development of novel adjuvants and vaccines.

...